Mactenn Systems Limited Case Study

Allen Sugar

Cleveland, Ohio, U.S.A. March 1992

SUMMARY

Food quality components for automated transfer of sugar, dextrose and a sugar/dextrose mixture without segregation or degradation.

CASE STUDY

Mactenn Systems Limited

Shrewsbury, Shropshire, ENGLAND

APPLICATION FEATURE

CUSTOMER

Allen Sugar Company

LOCATION

Cleveland, Ohio, U.S.A.

Efficient, economical sugar and dextrose transfer without product degradation or mixture segregation

INDUSTRY

Food

INSTALLATION DATE

March 1992

APPLICATION

Sugar, dextrose and sugar/dextrose mixture

transfer

TECHNOLOGY

Plug-flow discontinuous dense-phase

SYSTEM SUMMARY

VV/H-5 Maxflo VQ/H-6 Maxflo

VQ/K-6 Maxflo®

PHO Inflatek Valves with food grade seals

■ SYSTEM OBJECTIVES

System design requirements were:

- 1) Transfer sugar and dextrose in a clean environment with minimal degradation of product.
- 2) Minimize power requirements for efficient handling while automating processes.

MATERIAL CHARACTERISTICS

Materials

Sugar, dextrose and sugar/dextrose mixture

Bulk Density

Sugar 801 kg/m³

Dextrose 721 kg/m³

Temperature

Ambient

Moisture Content Sugar 0%

Dextrose: 8.1%

Transfer Requirements

11,500-27,300 kg per hour

Number of Receptions Conveying Distance

Two to five

35-76 metres

■ SYSTEM A APPLICATION/PERFORMANCE

■ To provide transfer from the sugar/dextrose blender into two (2) package machine hoppers via a Flintflex-coated VO/K-6 Maxflo®

Average Material Velocity 2.03 m/s
Phase Density 27.3
Air to Material Ratio 24.7 to 1

Average Air Consumption 10 nm³/min at 6-7 barg.

Product Degradation negligible Product Segregation negligible

■ A model VQ/K-6 Maxflo® was supplied under the customer's vibrating hopper. A low level probe (by others) in the hopper signaled the Maxflo® that material was present causing the inlet inflatek Valve® to open and the vessel to fill. Once the fill cycle was finished, the inlet inflatek Valve® closed and sealed. The vessel then pressurized and the material was conveyed through 150mm pipeline to the customer's receiving hoppers via a S D Valve and End Diverter. The conveying air was cleaned and vented via bin vent filters

■ SYSTEM B APPLICATION/PERFORMANCE

■ To provide transfer from two sugar Silos to the Blender, Brown Sugar area, Powder Mill or System A packaging hopper via a Flintflex-coated VQ/H-6 Maxflo®.

Average Material Velocity 1.5 m/s
Phase Density 43.2
Air to Material Ratio 16.3 to 1

Average Air Consumption 7.3 nm³/min at 6-7 barg.

Product Degradation negligible

■ A model VQ/H-6 Maxflo® was supplied to receive material from the customer's two sugar silos. Low level proves (by others) signaled the Maxflo® that material was present causing the inlet Inflatek Valve® to open. Once the fill cycle is complete, the inlet Inflatek Valve® closed and sealed. The vessel then pressurized and the material was conveyed by a 150mm pipeline that was split using a switch valve to divert the material to either the customer's receiving hopper or to a hopper in the Brown Sugar area and a hopper in the Powder Mill via a S D Valve and End Diverter. The conveying air was cleaned and vented via bin vent filters.

■ SYSTEM C APPLICATION/PERFORMANCE

■ To provide dextrose transfer from two Silos to the Blender, Brown Sugar area, Powder Mill via a Flintflex-coated Model VV/H-5 Maxflo®

Average Material Velocity
Phase Density
19.4
Air to Material Ratio
25.5 to 1

Average Air Consumption 10.5 nm³/min at 6-7 barg.

Product Degradation negligible

■ A model VV/H-5 Maxflo® was supplied to receive material from the customer's two dextrose silos. low level proves (by others) signaled the Maxflo® that material was present causing the inlet Inflatek Valve® to open. Once the fill cycle is complete, the inlet Inflatek Valve® closed and sealed. The vessel then pressurized and the material was conveyed by a 125 mm pipeline that was split using a switch valve to divert the material to either the customer's receiving hopper or to a hopper in the Brown Sugar area and a hopper in the Powder Mill via a S D Valve and End Diverter. The conveying air was cleaned and vented via bin vent filters.

SYSTEM ADVANTAGES

- Eliminates spillage and offers sterile handling of food ingredients
- Minimal food product degradation and mixture segregation
- Minimal power regulrement for automated processes
- Purpose-built system design for maximum productivity

ORGANIZATION NOTES

- Mactenn® Systems Limited specializes in the design and manufacture of advanced pneumatic conveying systems and provides systems for every process industry throughout the world.
- The company provides pneumatic conveying systems representing the entire range of conveying regimes from dilute-phase to solid dense-phase. The company utilizes a unique design approach to system requirements by carefully reviewing material characteristics and system design objectives before selecting process has proven to be completely successful in satisfying customer requirements.
- The company owns and operates comprehensive manufacturing facilities, full size precontract testing facilities, full size precontract testing facilities, and performs turnkey contracts to the highest quality standards.

SCOPE OF CONTRACT

- Mactenn® Systems Limited provided complete turnkey services for the performance or this contract. The scope of supply included:
 - Manufacture, supply and installation of the new system comprising mechanical and electrical components.
 - Startup and training of operating and maintenance staff.
 - **■** Completion of Acceptance Test

REFERENCE OF CONTACTS

■ Donald Lesiak Allen Sugar Company 216/432-3222

CONTRACT PERFORMANCE NOTES

- The contract was completed on schedule and has performed to specification.
- All system objectives were achieved.

